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Abstract

We present a logic for analyzing cryptographic proto-

cols. This logic encompasses a uni�cation of four of

its predecessors in the BAN family of logics, namely

those given in [GNY90], [AT91], [vO93], and BAN it-

self [BAN89]. We also present a model-theoretic se-

mantics with respect to which the logic is sound. The

logic herein captures all of the desirable features of its

predecessors and more; nonetheless, it accomplishes this

with no more axioms or rules than the simplest of its

predecessors.

Introduction

In the late eighties Burrows, Abadi, and Needham de-

veloped BAN logic [BAN89], which quickly became the

most widely used and widely discussed formal method

for the analysis of identi�cation/authentication proto-

cols, particularly authenticated key distribution proto-

cols. There have since been a number of papers not-

ing BAN's inability or limited ability to reason about

some features of both protocols and attacks on pro-

tocols. This has led several authors to propose alter-

natives to BAN. Many of these proposed alternatives

are essentially extensions. These extensions yield an

increase in reasoning power; however, collectively they

accomplished this via a large number of linguistic and

logical additions. As a result, one may be left unsure

about the assumptions and meanings implicit in the ap-

plication of these logics. Perhaps more signi�cantly, one

becomes increasingly unsure about the soundness of the

reasoning that results. Relatedly, the simplicity that

was part of BAN's basic appeal is lost.

This paper presents a logic that encompasses three of

these logical expansions, those presented in [GNY90],

[AT91], and [vO93]. (Henceforth these logics will be re-

ferred to as `GNY', `AT', and `VO', respectively.) And,

since these are essentially expansions, this logic encom-

passes BAN itself as well. GNY and AT add to and re-

formulate BAN to better reason about the same class of
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protocols. VO adds rules to reason about key-agreement

protocols. Our logic captures virtually all of the de-

sirable features of those logics. However, rather than

simply tacking together the notation and rules from

all of these we adopt an integrated approach, designed

to yield a logic that is sound with respect to a sin-

gle, relatively simple model of computation. Thus, this

paper also presents a semantics underlying these log-

ical expansions.1 This will be of manifold advantage.

First, some of these logics, including BAN itself, have

been questioned before for lacking an independently

motivated semantic foundation. (Cf., e.g., [Syv91].)

Amongst other things, such a foundation can give us

assurance that the reasoning in the logic is sound (i.e.,

false conclusions cannot be derived from true premises.)

BAN was essentially given such a semantic foundation

by Abadi and Tuttle in [AT91]. The model of com-

putation and semantics herein is motivated by Abadi

and Tuttle's but di�ers from it in fundamental ways.

Second, having a fairly detailed model eliminates much

of the confusion that can arise over the meaning of for-

mal expressions and/or the applicability of logical rules.

That is, since we can look at the semantic interpretation

of an expression, we can make better decisions about

whether that expression really says what we intend to

say in a given circumstance. This helps in the protocol

idealization step of a BAN or BAN-like analysis. Third,

by serving as a common semantics, it allows us to view

the extensions from a single perspective. Contrary to

�rst appearances, this need not result in an overly com-

plex logic. For, as a unifying model for comparison,

it allows us to see what aspects of each logic can be

captured by others and what not. There is thus a fair

amount of syntactic reduction since primitives of one

language are often de�nable in another. On the logical

level there is a similar amount of axiom chopping. The

result is a logic that is surprisingly simple.

In the next section of the paper we present a formal lan-

1We refer here to a model theoretic semantics for a logic. This
is not to be confused with a semantics for computer programs,

which is generally any mathematical interpretation (formal or in-
formal) of programming constructs.



guage and logic, and we describe the procedure whereby

these are to be applied in protocol analysis. (Hence-

forth this logic will be called `SVO'.) In x2 we present a
model of computation and a semantics for the language

presented in x1. The remainder of the paper looks at

the language and logic of GNY and VO in comparison

to SVO. In particular we consider how to capture in

SVO the linguistic expressibility and logical derivability

of GNY and VO. We do not present a separate sec-

tion for comparative discussions of AT. AT is the only

previously given logic with a model-theoretic semantics.

Comparisons between AT and SVO syntax require a se-

mantic context as well, and space limitations preclude

an adequate presentation of the full Abadi-Tuttle se-

mantics. We therefore make comparative comments at

appropriate points throughout xx1 and 2.

1 Syntax

Wewill now present a logic capturing the desirable prop-

erties of BAN, AT, GNY, and VO that is both sound

and relatively easy to use. Our presentation follows the

structure of [AT91], with some important di�erences.

1.1 The Language

We begin with a de�nition of our language. Following

Abadi and Tuttle, we reect that we are looking at ideal-

ized protocols and are hence representing the sending of

messages composed of expressions in a language rather

than mere bitstrings. However, we expand the language

slightly to cover, e.g., public keys, functions, and mes-

sage comprehensibility. We also contract the language

by doing away with separate syntax for forwarded mes-

sages and for binding messages to shared secrets. (The

�rst is eliminated because we have no current use for it.

The second is eliminated because its contributions are

captured in our language by other means.)

We assume the existence of a set T0 of primitive terms

containing a number of disjoint sets of constant symbols

representing principals, shared keys, public keys, private

keys, numerical constants, etc. Building recursively on

T0, we have n-ary function symbols representing func-

tions of n variables, for �nite n, e.g., simple arithmetical

functions, encryption, etc. In addition to these is a set of

primitive proposition constants. These represent atomic

propositions, which take the value true or false. The full

set of terms is called `T '. We actually require two for-

mal languages, one for messages and one for formulae.

Only formulae can be true or false or have principal's

beliefs attributed to them. On the other hand, some

messages are not formulae, e.g., a message consisting of

a name and a nonce. References to the language of SVO

are meant to encompass both languages.

Messages and formulae of the language are built from T
by mutual induction. The language of messages, MT ,

is the smallest language over T satisfying:

� X is a message if X 2 T ,

� F (X1; : : : ; Xn) is a message if X1; : : : ; Xn are mes-

sages and F is any function (including, e.g., ordered

n-tuples, (X1; : : : ; Xn), and encryptions, fXgK),

� ' is a message if ' is a formula.

The language of formulae, FT , is the smallest language

satisfying:

� p is a formula if p is a primitive proposition,

� :' and '^ are formulae if ' and  are formulae

(other connectives are de�nable in the usual man-

ner),

� P believes ' and P controls ' are formulae when '

is a formula and P is a principal,

� P sees X, P received X, P says X, P said X, and

fresh(X) are formulae when X is a message and P

is a principal,

� P
K
$ Q, PK(P;K), and P has K are formulae

when P and Q are principals and K is a key.

Most of the expressions just given either are standard

notation2 or should be intuitively clear. We give a brief

intutive description here for those that may not be.

`P controls '' indicates that P is a trusted authority

on '. If P says ', then ' is so. `P
K
$ Q' indicates

that K is a key shared exclusively by P and Q. No one

other than P or Q will ever encrypt messages using K,

and only P , Q, and those they trust (e.g., a server who

might generate it) know K. `PK(P;K)' is used simi-

larly for public keys. K is P 's public key, and `K�1'

is used exclusively to refer to the corresponding pri-

vate key. (We actually have distinct notation for public

keys for encryption, signature, and key agreement, viz:

PK (P;K), PK�(P;K), and PK�(P;K), respectively.

These will be discussed below in x2.2.)

A few more notes on notation: Typically `fXgK ' is
meant to refer to transformations of X using K. We

mean speci�cally to include digital signatures under this

notation as well as shared and public key encryption.

We may occasionally write `fXP gK ' to indicate that a

message, X, is from P . We do not simply write it as

an encrypted from �eld since other mechanisms may be

used, e.g., direction bits. P is, however, written inside

the scope of the encryption to indicate that it is con-

sidered bound to the message in a secure manner. We

assume principals to be competent (though not neces-

sarily honest) in setting from �elds.

2We use `�' (pronounced \horseshoe") rather than `!' to rep-

resent the conditional to avoid confusion with the standard nota-
tion for sending a message in protocol description, e.g., `A �! B'.



We �nd the following notation useful for giving a uni-

form presentation of the axioms. eK is the complement
of key K. In public key ciphering schemes, K�1 is the

complement of K, and K is the complement of K�1. In

shared key schemes K = eK. Unless restricted, either

explicitly or implicitly by context, `K' will refer below

to any symmetric, private, or public key. We can always

treat encryption and decryption as functions parameter-

ized by the relevant key. Thus, we can generalize this

notation to ` eF ', expressing the complement of a func-

tion F . This notation assumes that we are referring

to an e�ectively one-one function. It does not assume

that either the function or its complement (inverse) is

computable in practice. Throughout the paper ' and

 are metalinguistic symbols used to refer to arbitrary

formulae. � is a metalinguistic symbol referring to sets

of formulae.

1.2 The Logic

Our logic has two inference rules:

Modus Ponens: From ' and ' �  infer  .

Necessitation: From ` ' infer ` P believes '.

``' is a metalingusitic symbol.3 `� ` '' means that ' is

derivable from the set of formulae � (and the axioms).

`` '' means that ' is a theorem, i.e., derivable from

axioms alone. We describe derivability (i.e. proofs) be-

low in x1.3. Axioms are all instances of tautologies of

classical propositional calculus, and all instances of the

following axiom schemata:

Believing For any principal P and formulae ' and  ,

1. P believes ' ^ P believes (' �  ) � P believes  

2. P believes ' � P believes (P believes ')

Axiom 1 says that a principal believes all that logically

follows from his beliefs. Axioms 2 says in e�ect that a

principal can tell what he believes.

Source Association Keys are used to deduce the iden-

tity of the sender of a message.

3. (P
K
$ Q ^R received fXQgK) � Q said X

4. (PK�(Q;K) ^R received fXgK�1 ) � Q said X

Recall that `PK�(Q;K)' says that K is the public sig-

nature veri�cation key for Q. Precise meaning is set

out in x2.2. By de�nition, all symbols in the axioms are

symbols of the languages speci�ed above, FT andMT .

Thus, in particular, the X in these axioms is a message

3The symbol ``' is usually pronounced\turnstile". The symbol
`j=', to be introduced, is pronounced \double turnstile".

not a bitstring. A key can be applied (by anyone who

has it) to any bitstring to yield another bitstring. Since

the language does not represent arbitrary bitstrings, we

avoid attributing to principals the inappropriate decryp-

tion of any such bitstring.

Key Agreement Session keys that are the result of

good key-agreement keys are good.

5. ((PK�(P;Kp) ^ (PK�(Q;Kq)) � P
Kpq

 ! Q

Here Kpq = f(Kp;K
�1
q ) = f(Kq ;K

�1
p ) where f is

some key-agreement function as in Di�e-Hellman key

exchange. Recall that `PK�(R;K)' says that K is the

public key-agreement key for R and implies that K�1
r

remains secret. Precise meaning is set out in x2.2.

Receiving A principal receives the concatenates of re-

ceived messages and decryptions with available keys.

6. P received (X1; : : : ; Xn) � P received Xi

7. (P received fXgK ^ P has eK) � P received X

Seeing A principal sees anything he receives. A prin-

cipal also sees all components of every message he sees

and any message he can compute from what he sees.

The di�erence in meaning between seeing and receiving

is made precise in x2.2.

8. P received X � P sees X

9. P sees (X1; : : : ; Xn) � P sees Xi

10. (P sees X1 ^ : : :^ P sees Xn) �
(P sees F (X1; : : : ; Xn))

Here F is any function computable in practice by P .

There is no axiom for seeing corresponding to ax-

iom 7 for receiving, i.e., (P sees fXgK ^ P has e

K) �
P sees X. Such an axiom is a special case of axiom 10,

where F is the application of e

K to fXgK , and axiom

20 (P has e

K � P sees e

K).

Comprehending If a principal comprehends a mes-

sage and sees a function of it (of the appropriate type),

then he understands that this is what he is seeing.

11. P believes (P sees F (X)) � P believes (P sees X)

12. (P received F (X) ^ P believes P sees X) �
P believes P received F (X)

Here F is any e�ectively one-one function, and either

F or e

F is computable in practice by P . F may repre-

sent encryption or decryption where the relevant key is

treated as a parameter. The meaning of these axioms



is made clear by the truth conditions for belief set out

in x2.2. These axioms capture what we want of GNY's

recognizability. They also serve as a replacement for

A11 of AT. Abadi and Tuttle have noted that the ax-

iom was unsound as presented, but that they have a

revision that is sound.4 Note that the converse of ax-

iom 11 is a theorem, following from axiom 1 and axiom

10 by necessitation and modus ponens.

Saying A principal who has said a concatenated mes-

sage has also said and sees the concatenates of that mes-

sage. A principal who has recently said X has said X.

A principal sees what he says.

13. P said (X1; : : : ; Xn) � (P said Xi ^ P sees Xi)

14. P says (X1; : : : ; Xn) �
(P said (X1; : : : ; Xn) ^ P says Xi)

Jurisdiction This axiom in e�ect says that P 's word

is law for the ' in question.

15. (P controls ' ^ P says ') � '

Freshness A concatenated message is fresh if one of its

concatenates is fresh, and any e�ectively one-one func-

tion F (including encryption and decryption) of a fresh

message is fresh.

16. fresh(Xi) � fresh(X1; : : : ; Xn)

17. fresh(X1; : : : ; Xn) � fresh(F (X1; : : : ; Xn))

Nonce-Veri�cation Freshness promotes a message

from having been said (sometime) to having been said

during the current epoch.

18. (fresh(X) ^ P said X) � P says X

Symmetric goodness of shared keys A shared key

is good for P and Q i� it is is good for Q and P .

19. P
K
$ Q � Q

K
$ P

Having A principal has a key i� he sees it.

20. P has K � P sees K

1.3 Syntactic Analysis

In this section we give a brief description of the syn-

tactic protocol analysis technique, which is similar to

the techniques given in [BAN89] and [AT91]. The �rst

step of this technique is protocol idealization. Consider
a protocol step in which a key server S distributes a

key to principal A for the purpose of talking with B. A

typical example might thus be written,

4Personal communication.

S �! A: fTs; B;KabgKas

This means that S has sent the following to A (all en-

crypted with Kas, a key shared by A and S): a time-

stamp, Ts, B's name, and the session key Kab. In our

language we have already abstracted away from bit-

strings sent in messages to the elements of the language

that those bitstrings represent. But, we must go still

further. For, even if we represent that S has sent Kab

to A, we have not reected that by this transmission S

asserts Kab to be a good key for a session between A

and B.5 This is done via protocol idealization.6 The

above protocol step is rewritten in the idealized form:

S �! A: fTs; B;A
Kab ! BgKas

Once we have the idealized protocol, we write down cor-

responding formulae in the logic following a procedure

called `protocol annotation' in [BAN89]. We will use the

formulae generated by annotation as the premise set in

proofs of protocol goals. To generate this set we �rst

write down the initial assumptions. These are things

that are assumed to be true before the start of the pro-

tocol. For example, A
Kas ! S and A believes (A

Kas ! S)

would probably be needed as initial assumptions in or-

der to determine anything useful from the above proto-

col step. If a protocol analysis assumes that a principal

P comprehends a message X, we require that this com-

prehension be explicitly set out in the initial assump-

tions by P believes P sees X. We may also add to the

premise set Q received X for any step in the protocol,

P �! Q : X. Finally, we may add to the premise set

P sees X for any protocol step in which P generates X.

Typically, this X will be a nonce or a key or some such

thing. (For example, the above protocol step justi�es

adding S sees Kab to the premise set.)

With the premise set established we attempt to derive

various goals concerning the protocol. A proof is a

sequence of formulae in the logic. Each line is either

a premise, an axiom, or derivable from preceding lines

via modus ponens or necessitation. Our notion of proof

di�ers from Abadi and Tuttle's since they only allow

modus ponens to apply to theorems of the logic. This

would preclude premises as legitimate lines in a proof.7

Of course, in AT and SVO necessitation must always

5It is merely a mnemonic device that the distributed key in
this case is usually labelled `Kab'.

6Unlike in [BAN89], we do not assume that cleartext is left

out of the idealized protocol. As �rst noted in [GKSG91], such
omission can sometimes create problems.

7Our choice to characterize proofs in this way has important
repercussions for other features of the logic. In [AT91] it was nec-
essary for analysis to restrict consideration to\good" runs where,
e.g., initially held beliefs are true, where negations do not occur
within belief operators in initially held beliefs, etc. We need place
no such restrictions. We defer discussion because of space.



be restricted to theorems: we should not generally in-

fer that each principal believes all the assumptions con-

tained in the premise set. A typical goal of, e.g., a key

distribution protocol would be that one of the principals

believe that the distributed key is good for communica-

tion with the other.

Syntactic analysis of the type just described is all that

is available using BAN, GNY, and other logics without

an independent semantics. AT and SVO add another

level to this by providing an independently motivated

model-theoretic semantics. In addition to other values,

this allows one to do semantic analysis of the protocol.

One advantage of this is a rigorous means of assessing

the truth of initial assumptions. Problems arising from

initial assumptions, as in the Nessett protocol [Nes90],

are thus addressible using these logics. (Cf. [Syv92] for

a detailed discussion.)

2 Semantics

2.1 Model of Computation

Computation is performed by a �nite set of principals,

P1; : : : ; Pn, who send messages to one another. In ad-

dition there is a principal Pe representing the environ-

ment. This allows modelling of any penetrator actions

as well as reecting messages in transit.

Each principal Pi has a local state si. A global state

is thus an (n + 1)-tuple of local states. Principals can

perform three actions: sending a message, receiving a

message, and generating new data, such as keys. These

are denoted by send(X;G), receive(), and generate(X)

respectively. One can send and receive any message,

but one can only generate primitive terms, i.e., mem-

bers of T0. Other than generating new data, internal

computations are not represented as actions. They are

represented implicitly. Each action produces a transi-

tion from one state to the next. Note that receiving is

an action, performed by the principal Pi who receives

a message. The action itself is viewed as the nondeter-

ministic choice of some message from Pi's bu�er. This

is why it is listed as having no argument. Once per-

formed, however, the resulting local state reects which

message was received, e.g., receive(X). Sending is al-

ways directed to a set of principals, G. If only one

principal is the intended recipient, G is a singleton. If

a message is indiscriminantly broadcast, G is the set of

all principals.

A run is an in�nite sequence of global states indexed

by integral times. The �rst state of a given run r is

assigned a time tr � 0. The initial state of the current

authentication is at t = 0. The global state at time t in

run r is r(t), and the corresponding projection to Pi's

local state is ri(t). We may also write r(t) as `(r; t)'.

We will also occasionally refer to global states thus rep-

resented as points or (possible) worlds. (Cf. x2.2 under
Believing.)

The local state of each principal includes a local his-

tory of all the actions the principal has performed up to

that point and a set of available transformations. These

are the computations that are feasibly computable by

that principal. They include encryptions and decryp-

tions with available keys as well as other functions the

principal may perform, e.g., hashes, signatures, arith-

metical functions, etc. The environment's state consists

of a global history, a set of transformations available to

the environment, and a message bu�er mi for messages

sent to Pi and not yet received. We limit the set of runs

to those where a given message can only be received af-

ter it is sent. Thus, if receive(X) is in the local history

at ri(t), then send(X;G) is in the local history at some

rj(t
0), where t0 < t.

As mentioned, transformations on a message are im-

plicitly made when that message is sent or received.

For example, if a principal receives an encrypted mes-

sage fXgK and he has eK, then he has also received X.

Speci�cally, the set of received messages for a principal

Pi at a point (r; t) contains the following: (1) all mes-

sages X such that receive(X) appears in the local mes-

sage history at or prior to t, (2) the concatenates of any

concatenated received message, and (3) any message X

for which fXgK is a received message and appropriate

application of eK is an available transformation for Pi.

Note that under this de�nition, if Pi receives an en-

crypted message and later acquires the decryption key,

the decryption is a received message at that later point

in the run.

For a given principal Pi, the collection of all messages

that are received, newly generated, or initially available

to Pi implicitly de�nes a set of seen messages for him at

that point. This consists of the messages just mentioned

plus all the messages he can recursively produce from

those messages via his available transformations or by

creating formulae from seen messages. (E.g., P has K,

P says X, etc.) The said messages are somewhat more

restricted; we cannot hold a principal responsible for

saying everything that is derivable by him from things

he said. Given a message M that Pi sends at (r; t), we

de�ne the said submessages ofM by recursively adding

to fMg the following: (1) the concatenates of all con-

catenated submessages ofM , (2) the unencrypted mes-

sage of any encrypted submessage of M for which Pi

has the encryption key and for which he sees the unen-

crypted message, (3) the unsigned message in any signed

submessage ofM for which Pi has the signature key and

sees the unsigned message, and (4) the unhashed mes-

sage in any hashed submessage of M for which he sees

the unhashed message. Implicit in saying that Pi has

the key or hash function in the above is that Pi also

possesses an algorithm that is computable in practice

by him and that produces the relevant transformation.

The set of said messages for Pi at (r; t) is the union of

the sets of said submessages of all messages that P has



sent in r through time t. We further restrict our model

to runs where principals can only send what they see.

Thus, if send(X;G) is in the local history at ri(t), then

X is in the seen messages at ri(t). Relatedly, the set

of available transformations for a given principal in a

single run is monotonically nondecreasing over time.

2.2 Truth Conditions

We now set out the conditions under which a formula

is assigned to be true. We begin by �xing a system,

i.e. a set of runs, R and an interpretation � that maps

each proposition constant p 2 T to a set of points �(p),

intuitively, those points at which p is true. Truth of

a formula ' at a point (r; t), written `(r; t) j= '', is

inductively de�ned below. `j= '' means that ' is valid

(true at all points).

Primitive Propositions and Logical Connectives

(r; t) j= p i� (r; t) 2 �(p),

(r; t) j= ' ^  i� (r; t) j= ' and (r; t) j=  

(r; t) j= :' i� (r; t) =j= '
8

Receiving
(r; t) j= P received X

i� X is in the set of received messages for P at (r; t), as

de�ned in x2.1.

Seeing and Having
(r; t) j= P sees X

i� X is in the set of seen messages for P at (r; t), as

de�ned in x2.1. Truth conditions for PhasK are the

same, except that K can only be a key.

Saying
(r; t) j= P said X

i�, for some messageM , at some time t0 � t in r, P sent

M and X is a said submessage of M for P at (r; t0).

This gives the truth conditions for P having said X

at some point in the past. We also characterize what

in means for P to have said X in the current epoch

(typically taken to mean since the initial point of the

current protocol run).

(r; t) j= P says X

i�, for some message M , at some time 0 � t
0 � t in r,

P sent M and X is a said submessage of M for P at

(r; t0).

Jurisdiction
(r; t) j= P controls '

i� (r; t) j= P says ' implies (r; t0) j= ' for all t0 � 0.

Note that jurisdiction constitutes authority at all points

in the current epoch, not just at the time P says '.

This makes it a very strong property. Attributions of

8`(r; t) =j= '' means it is not the case that (r; t) j= '.

jurisdiction are typically part of initial assumptions and

should be made sparingly and judiciously.

Freshness A message is fresh if it has not been part of

a message sent prior to the current epoch. It is su�cient

but not necessary for freshness that a message be unseen

prior to the current epoch. A principal might generate

a message earlier and not send it until the epoch begins.

Truth conditions are thus in terms of the what has been

said rather than what has been seen.

(r; t) j= fresh(X)

i�, for all principals P and all times t0 < 0, (r; t0) =j=
P said X.

Keys We will give truth conditions with respect to

four types of keys: shared keys, public ciphering keys,

public signature keys, and public key-agreement keys.

Truth conditions for a shared key to be good for com-

munication between P and Q is essentially the same as

in [AT91]:

(r; t) j= P
K
$ Q

i�, for all k0, (r; k0) j= R said fXgK implies either

(r; k0) j= R received fXgK or R 2 fP;Qg.

`PK(P;K)' means both that K is the public key as-

sociated with principal P and that the corresponding

private key, K�1, is good. (We refer here to all three

types of public keys.) The truth conditions below are

thus for both good public key binding and private key

secrecy. We will also use `PK
�1
(P )' not to express any

proposition, but simply to refer to P 's private key in the

absence of a speci�c name. We similarly use `PK(P )' to

refer to P 's public key. Signing and ciphering (encryp-

tion) may be separated in the case of public keys. Thus,

the two sets of truth conditions for these two types of

public keys separate out those features from the shared

key truth conditions. The �rst truth conditions for pub-

lic keys is for signature keys.

(r; t) j= PK�(P;K)

i�, and all t0, (r; t0) j= Q received fXgK�1 implies

(r; t0) j= P said X. Next we give truth conditions for

public ciphering keys.

(r; t) j= PK (P;K)

i�, for all t0, (r; t0) j= Q sees fXgK implies (r; t0) j=
Q sees X only when Q = P .

Truth conditions for key-agreement keys are a bit more

complicated:



(r; t) j= PK�(P;K)

i� for all t0, (1) for some Q, Kpq = f(K�1
;PK�(Q))

implies (r; t0) j= P

Kpq

 ! Q; and, (2) for all R, Kpr =

f(K�1
;PK�(R)) and (r; t0) =j= P

Kpr

 ! R implies, for all

U , Kur = f(PK
�1

� (U );PK�(R)) implies

(r; t0) =j= U
Kur ! R. (Here f is some agreement func-

tion such as that in Di�e-Hellman key agreement. As

with other encryption algorithms/functions in protocol

analysis, we assume f is strong. In other words, attacks

based on properties of the function not speci�ed here

are deemed beyond the scope of our analysis.) The �rst

clause guarantees that there is someone with whom P

can form a good key. The second clause guarantees that

anyone with whom P cannot form a good key cannot

form a good key with anybody. The truth conditions for

PK�(P;K) may seem overly complex. But, we cannot

simply require that a session key P produces via agree-

ment with any Q is good. This is because, even if K

were still secret, any given Q's private key-agreement

key may have been compromised, compromising Kpq .

On the other hand, we cannot simply require that if P

cannot produce a good session key by agreement with

Q, then Q has a bad private key-agreement key. That

would lead us into a circularity in determining whether

truth conditions are satis�ed. The above characteriza-

tion achieves what is needed while avoiding circularity.

Believing Our characterization of belief is based on

possible worlds. This approach to characterizing be-

lief was �rst given by Hintikka in [Hin62]. Since the

early eighties it has been applied to distributed com-

puting (one example of such application being that in

[AT91]). The idea is that a principal's beliefs in a given

state are determined by which worlds (global states)

are considered to be possibly the state he is in. From

his perspective these worlds are indiscernible from one

another, though they may be discernible from the one

he is in. (This is because he may be mistaken about

which state he is in.) For each principal Pi we can thus

de�ne a relation �i that indicates for each world (r; t)

which worlds are possible in this manner for Pi. Not

surprisingly, this is closely tied to the messsages that

are comprehended by Pi at each world, those that he

can discriminate to be what they are.

The messages that a principal can comprehend are those

that he can ultimately tie back to cleartext he has seen.

The local state for a principal includes a set of seen mes-

sages; however, some of these he will see without com-

prehension. For example, if he sees a hash H(X) but

notX, then he does not comprehend what he's seeing to

be H(X). Similarly, if he sees fXgK , but does not have
the relevant decryption key, then he does not compre-

hend what he is seeing even if X is available plaintext.

We determine the set of comprehended messages for a

given principal Pi at a given point (r; t) as follows.

Of the seen messages for Pi at (r; t), include in the com-

prehended messages all primitive terms of T0 and all

proposition constants, also any formulae of the form

P
K
$ Q, PK(P;K), or P has K. The result is the basis

for the set of comprehended messages. We can then re-

cursively add seen messages to the basis set. If X is in

the comprehended set and P is in the comprehended set,

then any of the following are added (from the seen mes-

sages): P sees X, P received X, P says X, P said X,

or fresh(X). Similarly, if P and a formula ' are in

the available set, then P believes ' and P controls ' are

comprehended. Any seen compound formula is compre-

hended if its subformulae are comprehended. We in-

troduce new notation for concatenated formulae where

some, but not all, of the concatenates are compre-

hended. If (X1; : : : ; Xn) is a seen message, then the

result of replacing any Xi with � so that only com-

prehended messages and �s appear in the concatenated

message is comprehended. Finally, if (1) F is any e�ec-

tively one-one function, and either F or eF is computable

in practice by P , (2) X is comprehended, and (3) F (X)

is a seen message, then F (X) is comprehended.

De�ne comprehension(P; (r; t); (r0; t0)) to be the set of

messages that results from the applying the avail-

able transformations for P in (r; t) to the seen mes-

sages for P in (r0; t0) according to the procedure just

given for producing the set of comprehended messages

for P (at a single world). Thus the comprehended

messages for P at (r; t) are exactly the members of

comprehension(P; (r; t); (r; t)). The possibility relation

�i for a principal Pi in state (r; t) is de�ned by

(r; t) �i (r
0
; t
0)

i�, local histories in ri(t) and r
0
i(t

0) are the same and

comprehension(P; (r; t); (r; t)) =
comprehension(P; (r; t); (r0; t0)) �
comprehension(P; (r0; t0); (r0; t0)).9 The second clause

implies that a principal should consider possible those

worlds that look the same and where his discernment

capabilities are at least as great as they actually are.

This does not mean that he can tell what any further

capabilities would be.

We can now give truth conditions for belief formulae:

(r; t) j= Pi believes '

i� (r0; t0) j= ' for all (r0; t0) such that (r; t) �i (r
0
; t
0).

This completes the conditions necessary to assign truth

values to all formulae in the logic.

9Those who may have been wondering why SVO has no nega-

tive introspection axiom (axiom A3 in AT) should note that this
relation is not euclidean. (Nor do we wish it to be.)



2.3 Soundness

Theorem 2.1 If � ` ', then � j= '. (For a set of

formulae � and a formula ', if ' is derivable from �,

then ' is true at any world making all of � true.)

Proof: (Sketch) This is a typical tedious soundness

proof: show that the axioms are valid (true at all worlds)

and that derivation preserves truth. Proof of validity for

all axioms is direct by inspection of the truth conditions

given in x2.2. As space is limited, we prove only validity

of axiom 4 as an example.

(PK�(Q;K) ^R received fXgK�1 ) � Q said X

This is a conditional, hence true at a point (r; t) if

(r; t) =j= (PK�(Q;K) ^ R received fXgK�1 ) or (r; t) j=
Q said X. If the antecedent is false at (r; t) then, the

conditional is true. If the antecedent is true at (r; t),

then both of its conjuncts are true there. But, (r; t) j=
(PK�(Q;K) implies that if (r; t) j= R received fXgK�1 ,
then (r; t) j= Q said X. So axiom 4 is true at all worlds

(r; t).

All that remains to be shown for soundness is that all

the ways that ' can be derived from � preserve truth.

There are three cases. (1) If ' is a theorem or member

of �, then � j= ' trivially. (2) If ' is obtained by modus

ponens, then it occurs in a derivation from � in which

some  and  � ' occur earlier. Then by induction on

the structure of the derivation and de�nition of truth

conditions, � j= '. (3) Also by a trivial induction, if

' is obtained by necessitation, then ' is P believes  
for some P and some  such that `  . By inductive

hypothesis, j=  . So, by the truth conditions for belief,

j= P believes  . Thus, a fortiori, � j= P believes  . 2

3 Relation to GNY extensions

In [GNY90], Gong, Needham, and Yahalom presented

GNY. This logic is noteworthy for making one of the

largest additions to both the notation and logical rules

of BAN. It is therefore interesting to see how much of

it is easily accomodated in SVO.

3.1 GNY Notational Additions

P / X: P is told X. This is expressed in our syntax as

`P received X'.

P 3 X: P possesses, or is capable of possessing X. This

is expressed in our syntax as `P sees X'.

P j� X: P once conveyed X. This is expressed in SVO

as `P said X'.

#(X): X is fresh. This is expressed in SVO as

`fresh(X)'.

�(X): Recognizability of X. In GNY rules this only

occurs in the context of someone's belief. This is con-

sistent with the reasonable requirement that recogniz-

ability be tied to an individual, rather than considering

what is recognizable to everyone. We will express this

relativization in SVO by translating expressions of the

form P j� �(X) in GNY as P believes P sees X.

P / �X: P is told a formula that he did not convey

previously in the current run. This is captured in SVO

as `(P received X) ^ :(P says X)'. Note that the SVO

expression is actually broader than the GNY expression.

It says that P did not sayX since the start of the current

run, whether within the run or not.

X ; C: These are called message extensions. They are

used in conveyed messages to indicate conditionality of

an assertion. They are only used logically in connection

with GNY J2, one of the jursdiction rules. We defer

comment to the section below where we discuss this rule.

It is interesting that we were unable to give translations

for some of the GNY formulae without referring to the

corresponding logical rules. This is because, beyond a

minimal intuitive explanation, any technical meaning

that GNY expressions hold is tied up with the logic.

3.2 GNY Logical Rules

We will look at these rules with the following question

in mind. Once we have made an appropriate trans-

lation to SVO syntax, is there a logical derivation (in

SVO) of the conclusion of a rule from its premises? If

so, then the rule expresses a result that is syntactically

captured in SVO. (Hence, we know that it is also seman-

tically captured by our model of computation because of

soundness.) When we say that a GNY rule is derivable

in SVO below we mean that the answer to the question

just asked is yes.

GNY Rationality Rule
This rule says that whenever we can infer C2 from C1,

we can also infer P j� C2 from P j� C1. It falls out of

the modus ponens rule and axiom 1.

GNY Being Told and Possession Rules
All of these rules are obviously derivable in SVO except

T5. T5 says that P / Y follows from P / F (X;Y ) and

P 3 X. F is taken to be a many-to-one computationally

feasible function that is one-to-one computationally fea-

sible if either X or Y is held constant, as is its inverse.

([GNY90], p. 235.) It is di�cult to assess such a rule

in general, but Gong et al. do provide one example of

the type of function they have in mind, viz: exclusive-

or. Our discussion of T5 thus follows their example.

If we view exclusive-or as encryption, then T5 can be

viewed as a general statement of T3, which says that

P /Y follows from P /fY gX and P 3 X. However, care

must be taken in such cases because, when exclusive-or

is used for encryption, fXgY = fY gX . Strictly speak-

ing, in our language this is only true when both X and

Y are keys since fXgY is only well-formed when Y is a

key. Nonetheless, according to T5 in GNY, if P receives

X�Y and P possesses both X and Y , then, P has been

told X and been told Y . There may be applications for



which this is a reasonable inference, but the example

shows why we might not want to have T5 as a logical

rule. Often, if not virtually always, we would like to

distinguish a message sent from attendant parameters,

such as keys used to encrypt the message. However, T5

obliterates this distinction by treating the arguments

of F symmetrically. Furthermore, such symmetry can

serve as the basis of attacks that allow a penetrator to

deduce keys from chosen, known, or guessed plaintext|

for example, the Simmons attack on the TMN protocol

discussed in [TMN90]. This example does not serve as

a similar basis for criticism of T3. The symmetry in the

encryption algorithm subjects it to direct attack. This

violates the general assumption of all logics discussed

herein that encryptions are not breakable by direct at-

tack (to reveal either the plaintext or the key).

GNY Freshness Rules
All of these rules are derivable in SVO except F5 and

F6. F5 says that a principal's belief in the freshness of

a private key follows from his belief in the freshness of

its public cognate. F6 expresses the converse inference.

There is no reason in practice to question these rules;

however, there is also no harm in practice in leaving

them out since public keys are usually long term and

not distributed on line. They thus do not generally play

a role in freshness considerations. F11 is only derivable

in SVO assuming R6, which will be discussed shortly.

GNY Recognizability Rules
All of these rules are derivable in SVO except R6. This

rule says that P j� �(X) follows from P 3 H(X). But,

from the mere possession of H(X), P should not form

any beliefs about X; without X, he may not know that

he is seeing H(X) rather than some other message or

even just a random bitstring. R6 as given in GNY is

thus too strong. If we replace the statement that P

believes X is recognizable with a claim that X is rec-

ognizable by P we get a more reasonable conclusion.

However, we have no formal means to represent this in

either SVO or GNY. SVO does not have the expressive

capability to indicate that a principal recognizes a given

bitstring as the same one that yielded the hash he re-

ceived in a previous message. But, this is not a very

serious limitation. Generally we would like to have such

recognition only when the bitstring has some meaning

to the recipient, i.e., corresponds to an element of the

language that he comprehends. This type of recognition

is captured in SVO via axiom 12.

GNY Message Interpretation Rules
We do not attempt to handle all of these, on general

grounds of logical unwieldiness and inelegance. We

make an admittedly arbitrary division by addressing

only those rules containing less than �ve premises. Once

appropriate translations have been made, these are

derivable in SVO except for the second conclusion of I4:

P j� Q j� fXg�K . We saw no practical value of such

a conclusion. Should this be incorrect, Q said fXgK�1

can be added to the consequent of axiom 4. (Similar

addition can be made to axiom 3.) This logic remains

sound with respect to the semantics given in x2.

GNY Jurisdiction Rules
Like AT, SVO separates belief from everything else, in-

cluding trust. This is useful (and perhaps the only way

one is likely to maintain a model-theoretic semantics).

The only jurisdiction rule (actually axiom) in SVO is

the same as in AT, viz: P controls ' ^ P says ' � '.

GNY J1 is taken directly from BAN's jurisdiction rule.

BAN also has only one rule in this category. Nonethe-

less, BAN's rule is not derivable from the above nor

valid in the semantics. This is no great loss since the

only iterated beliefs we generally care about are derived

from things that one principal says to another. In other

words, the above axiom captures what we need from

J1. BAN and GNY must express jurisdiction in terms

of belief since that is their only way to capture a prin-

cipal's actions in the current epoch. A more detailed

discussion of this is given in [AT91], x3.2.

As Gong et al. say (p. 240) that J3 is just a special case

of J2, we focus on J2.

(From P j� Q j) Q j� �, P j� Q j� (X ; C), and

P j� #X, infer P j� Q j� C.) This rule introduces new

notation not discussed elsewhere. `P j� Q j) Q j� �'
captures the idea that P believes Q to be honest (Q only

says what he believes) and competent (Q understands

the implications of what he says). This can be trans-

lated directly to the following SVO syntax expression:

P believes (((Q says X) ^ (X � C)) � (Q believes C)).
The second premise of the rule can also be translated di-

rectly to SVO: P believes ((Q said X)^(X � C)). And,
the third premise is the same in GNY and SVO, except

for an irrelevant notational di�erence. Similarly, the

conclusion of the rule is the same in GNY and SVO. So,

the rule is entirely expressible within the SVO syntax.

Furthermore, it is not only sound but an easy logical

derivation in SVO.

4 Relation to VO extensions

The �rst paper to introduce the capability to reason

about key agreement, e.g., Di�e-Hellman exchanges, to

a BAN-like logic is [vO93]. Some of the notation and

rules intoduced therein arise naturally in such protocols,

but they are also applicable to shared and private key

protocols as discussed in the above papers.

4.1 VO Notational Additions and Logical
Rules

A
K�
 ! B: K is A's uncon�rmed secret suitable for

B. No one aside from A and B and those they trust

knows or could deduce K. This construct emphasizes,

however, that while A knows K, B may or may not.

This notation arises quite naturally when looking at

key agreement protocols, such as Di�e-Hellman type



key distributions, and is actually easy to capture in our

semantics. Since `A
K
$ B' simply means that K is a

good key for A and B regardless of whether either of

them knows this, we can actually de�ne A
K�
 ! B in

the SVO syntax: (A
K
$ B) ^ (A has K).

A
K+
 ! B: K is A's con�rmed secret sutiable for B. A

knows K, and has received evidence con�rming that B

knows K. No parties other than A and B and those

they trust know or can feasibly deduce K. This is a

little trickier to capture in our semantics. For we must

decide what it means for a A to receive con�rmation

that B knows K. Let us consider a typical example of

such con�rmation in a protocol. Suppose B has just

received the session key K and wants to con�rm this

to A. If she has sent him a nonce Na earlier in the

protocol run, a typical way for B to send con�rmation

is by encrypting Na (or perhaps Na � 1) with K and

his own name and sending this to A. VO reasons about

the key con�rmation B sends to A in this example by

introducing con�rmation axioms, which we will discuss

below when we come to the con�rm(K) notation.

How would this key con�rmation be handled using ex-

isting constructs in SVO? Consider an SVO analysis

of a key distribution protocol where the above con-

�rmation occurs. The standard practice in [BAN89]

would be to idealize this in the protocol analysis by

B sending to A fNa; (A
K
$ B); BgK . In other words,

the protocol idealization of B's sending such a mes-

sage incorporates B saying that K is a good key for

A and himself. But, notation of the form A
K
$ B is

BAN's only way to express statements about a key.

Using SVO notation we can make the more accurate

idealization of this message as fNa; (B has K); BgK .
Following this idealization procedure, we could ideal-

ize A's receipt of the message we have been discussing

as `A received f(Na; (B has K); BgK '. Given that A

has the necessary beliefs about the freshness of Na
and the (uncon�rmed) goodness of K we can derive

the conclusion of the VO key con�rmation rule (R32)

within SVO. Thus, if we translate the syntax A
K+
 ! B

as A believes ((A
K�
 ! B) ^ (U says U has K)), where

U 6= A.10 Reasoning about key con�rmation can be

captured entirely within SVO. (Translating this fully

back to the SVO syntax we get A believes ((A
K
$ B ^

A has K) ^ (U says (U has K))), where U 6= A.)

The technique of the last paragraph allows us to cap-

ture key con�rmation entirely without adding explicit

con�rmation syntax to SVO. However, there is a hid-

den informal assumption in such an approach. We can

only use it if we systematically employ metarules for

10For reasons that will soon become apparent, we will give a

revised de�nition of `A
K+
 ! B' below.

idealization. Instead of explicitly using VO con�rma-

tion axioms we must, in e�ect, always employ those ax-

ioms in protocol idealization. But, if we add the VO

notation and rules, the idealization of the con�rmation

message is the same as its representation in the concrete

protocol. (In other words fNagK is idealized simply as

fNagK .) We thus have a choice. On the one hand is a

more streamlined logic and semantics accompanied by

a more complex analysis procedure, while on the other

is a more complex logic and semantics accompanied by

a more straightforward analysis procedure. By far the

greatest source of confusion and misapplication of BAN

to date has come from slipping dubious assumptions in

(or leaving necessary assumptions out) during proto-

col idealization. The more formally explicit approach is

thus safer, but either can be rigorously followed to the

same practical e�ect. In the next paragraph we will dis-

cuss a proposal that combines the advantages of explicit

axioms, clearer idealization, and a simpler logic.

con�rm(K): Current knowledge of K has been demon-
strated. We have been discussing the relative merits of

capturing key con�rmation via axioms and via direct

translation to the syntax of SVO. If we choose to follow

the latter route, then `con�rm(K)' becomes irrelevant

notation. The axioms make use of recognizability in

the sense of GNY. Thus, if we wish to follow the former

route, we will have to relativize `con�rm(K)' in just the

way that we relativized `�(X)' in x3.1. For convenience
in the following discussion we introduce the syntactic

shorthand �P (X) � P believes P sees X. The rela-

tivization is thus trivial notationally. For example, VO

axiom C3 becomes

fresh(K) ^ �P (H(K)) � con�rmP (K)

We could use this to try to treat con�rmP (K) as a de-

�ned term following the axioms. But this raises some

problems. Suppose we introduce the following de�nition

(which encompasses C1, C2, and C3):

con�rmP (K) �
(fresh(X) ^ �P (fXgK))_
(fresh(X) ^ �P (MACK(X))_
(fresh(K) ^ �P (H(K)))

If we were then to try to apply this in VO rule R32, we

would need to verify that

A received �con�rmA(K). Unpacking the syntactic def-

inition this would mean that A received � ((fresh(X) ^
�P (fXgK ))_ (fresh(X)^�P (MACK(X)) _ (fresh(K)^
�P (H(K)))). But, since receiving does not distribute

across disjunctions, this would never actually be satis-

�ed. Actually this problem exists for R32 even before

we attempt to give a de�nition: it is clear that in the

condition A received � con�rmA(K), A is not meant to

see a statement regarding freshness. Rather she is sup-

posed to see a statement that contains a fresh compo-

nent. In addition there is the open endedness of the



axiom list. These axioms were meant to capture three

common ways of establishing key con�rmation in prac-

tice, but others are possible. A fourth would simply

involve sending the key K itself in a message; the mes-

sage would have to be fresh somehow itself if the key K

was not known to be fresh. (Note that in Di�e-Hellman

key agreement, it is.) So, another axiom would be

C4. �P (K) ^ fresh(K) � con�rmP (K)

These and similar possibilities can all be represented in

SVO by a single syntactic de�nition:

con�rmP (K) � ((P received F (X;K)^�P(F (X;K))^
(fresh(X) _ fresh(K)))

Here F is a feasibly computable function, that is ef-

fectively one-one. This means it is infeasible to �nd

any two pairs (X;K) mapping to the same value. F

is required to be one-way (in the sense that encryp-

tions, MACs, and cryptographic hash functions would

be) if and only if it is important that K not be re-

vealed by the con�rmation process itself.11 This also

allows a more general de�nition of (data) con�rmation

(rather than key con�rmation). Restricting con�rma-

tion to keys seems unnecessary, and it should not be a

general constraint that data are not revealed through

the con�rmation process. Ways of con�rming knowl-

edge of information without revealing the information

itself is the subject of a large area of research, namely

zero-knowledge; this subject is beyond the scope of the

present work. Note X can be null, and F could be

the identity function, as in C4, the above axiom. We

have incorporated `P received F (X;K)' into the de�ni-

tion because con�rmation is only relevant if someone

receives it. Bringing this into the axiom itself avoids

the problem of distributing received raised above. We

can provide a similar de�nition to indicate that P has

received con�rmation from someone other than herself:

�con�rmP (K) �
(P received F (X;K)) ^ :(P said F (X;K))^

�P (F (X;K)) ^ (fresh(X) _ fresh(K))

The de�nition just introduced has a number of advan-

tages. It makes con�rmation criteria explicit but con-

stitutes no addition to SVO since it is eliminable, i.e.,

it can always be replaced by the longer expression that

is purely in the language of SVO. As just indicated, its

application goes beyond the current context. It still re-

quires that informal work be done, but the idealization

of the protocol is as direct as it would be were we to use

the axioms from [vO93]. (As in our example of return-

ing an encrypted nonce above, fNagK is still idealized

11In con�rming knowledge of K, the intention is that the keyK
itself is not revealed. However, in terms of formal de�nition, this
is irrelevant|what is of import is con�rmation only. If a key K

is somehow compromised, whether in relation to key con�rmation

or otherwise, this may violate an assumption about key quality,
but that should be treated distinctly from key con�rmation.

as fNagK .) The informal step is in determining whether

or not this constitutes a function and functional argu-

ments as stipulated in the axiom. But, this question

is not subject to the same di�culties as when requiring

con�rmation judgements in protocol idealization. There

we are required to determine the intended meaning of a

message (fragment). Here we need only make a determi-

nation based on mathematically rigorous criteria|up to

the limits of the usual cryptographic assumptions made

in protocol analysis.

Given the considerations of the last several paragraphs,

we revise our de�nition of `A
K+
 ! B'.

A
K+
 ! B � ((A believes A

K�
 ! B) ^ �con�rmA(K))

We now turn to notation for reasoning about public

and private keys. The BAN notation to represent that

K is A's public key is `
K
7! A'. It is simply assumed

in BAN that the corresponding private key is kept se-

cret. Notation for the private key, `K�1', is only used

to indicate encryption using the key, e.g., fXgK�1 . A's
posession of K�1 is meant to be implicitly inferred from

A believes
K
7! A. GNY introduce syntax for explicitly

representing and reasoning about possession of private

keys. Nonetheless, goodness of a private key is still

meant to be inferred from a statement about the public

key as in BAN, i.e., from
K
7! A. In [GS91], Gaarder and

Snekkenes separate statements representing that A has

associated a good public key K, viz: PK(A;K), from

those representing that A has associated some good pri-

vate key, viz: �(A). Thus the judgement about the

quality of the private key is now associated with a state-

ment about the private key, rather than being implied

by a statement about the public key. In e�ect, this sep-

arates statements about the binding of a public key to

a principal from statements about the quality of a prin-

cipal's private key. Gaarder and Snekkenes separated

these to reason about certi�cates binding a principal

to a public key in the X.509 protocol separately from

evaluating trust that the corresponding private key is

kept secret. VO follows the developments of Gaarder

and Snekkenes and also introduces distinct notation for

public keys for signing, enciphering, and key agreement.

PK�(A;K): K is the public signature veri�cation key
associated with principal A.

PK
�1

� (A): A's private signature key K�1 is good. Here
K

�1 corresponds to the public key K in PK�(A;K).12

Analogous de�nitions are made for enciphering

(PK (A;K), PK
�1

 (A)) and key agreement

12We are following convention here by using `K�1' to refer to
a private signature key. Some schemes such as RSA can be used
for both enciphering and signatures because of invertibility. This
makes the notational choice quite natural. However, some signa-

ture schemes are not invertible, and for those schemes the notation
is slightly deceptive.



(PK�(A;K), PK
�1

� (A)). Unfortunately in the seman-

tics of x2 we were unable to give truth conditions for

all of these individually. We have reverted to grouping

the binding of a public key together with the quality

(secrecy) of the private key. We thus use `PK(A;K)' to

mean both thatK is the public key associated with prin-

cipal A and that the corresponding private key, K�1,

is good. If this is a loss, it is logically speaking a mi-

nor one. There are good reasons for separating the two

notions. For, there are two distinct kinds of protocol

failures here. On the one hand, the secrecy of a pri-

vate key might be compromised. On the other hand,

a principal A might be tricked into thinking that the

wrong public key is bound to principal B. The distinc-

tion introduced by Gaarder and Snekkenes allows us to

di�erentiate these failures. Nonetheless, the only logical

use of the corresponding expressions occurs in their rule

R13, where both proper binding and good private keys

are premises of the rule. (Actually, what is required is

belief therein, but this is aside.) This is similarly true

for VO's rules. Thus, since both good public binding

and good private keys are required for any logical use

of these notions, it is su�cient to have notation that

captures them together. (Nevertheless, we acknowledge

that it would be nice to have the requirements syntacti-

cally separated for a more direct reection of the nature

of potential failures.)

Aside from the key con�rmation axioms already dis-

cussed, VO introduces three new logical rules. (These

are presented in appendix C.) They are all derivable in

SVO, with the translations discussed above.

5 Conclusions and Further Study

A formal method that tries to cover all the

features of cryptographic protocol analysis is

like a Swiss Army knife|not a terribly good

instance of any of the tools it contains.

|Roger Needham

In this paper we have presented a logic that encom-

passes four of its predecessors in the BAN family. We

have also presented a model-theoretic semantics for our

logic with respect to which it is sound. Despite adding

expressiveness and axioms su�cient to reason about all

the properties of cryptographic protocols to which these

four predecessors are addressed, it is no more syntacti-

cally complex than any of them. In fact, measured by

the number of rules or axioms and their relative simplic-

ity, it is less complex than GNY, AT, and VO. And, it

has about the same number as BAN. In sum, we believe

this logic to be as simple to use or simpler than any of

those from which it is derived; yet it is more expressive

than any of them.

We have not looked at all the logics that have been de-

rived from BAN, e.g., [MB93]. (That logic is a contrac-

tion rather than an expansion of BAN. It is designed

to allow much that is informal in the analysis process

to be automated.) In particular we have not discussed

logics that express either time or message ordering. The

goals of these logics are somewhat more ambitious than

those discussed above. One of those goals is to address

more types of replay attacks. BAN is only directed at

classic replays, i.e., replays of messages originally sent

before the current protocol began. GNY, with its not-

originated-here syntax, adds the ability to reason about

some replay attacks using messages fromwithin the cur-

rent protocol run but still does not address interleav-

ing attacks, that is attacks involving replay of messages

from at least two contemporaneous protocol runs. (Cf.

[BGH+92], [DvOW92], [Sne92], [Car93].) Indeed, none

of the logics discussed in this paper generally addresses

interleavings at all.

Failure of methods such as BAN logic to address inter-

leaving attacks has led some to focus on the notion of

current protocol run rather than on freshness. However,

this still leaves some types of replays unaddressed (e.g.,

the �rst attack presented in [Syv93b]). In [Syv93a] a

temporal version of BAN logic is presented that allows

one to express general criteria for freedom from replays.

It does not give a general means for detecting such re-

plays. Thus it is only a �rst step; nonetheless, the intro-

duced temporal operators are necessary if one is to even

express such criteria in a BAN-like logic. That logic is

sound with respect to the semantics presented in this

paper. In fact, fully integrating it into the logic we have

given is simply a matter of adding �ve axioms and a

rule.

We also have yet to explore the relationship between

di�erent BAN-like logics that reason about time (e.g.,

[GS91]) or the relationship they have to logics that allow

reasoning about message ordering (e.g., [KG91]). Our

suspicion is that the logics of [GS91] and [KG91] can be

captured by the logic of this paper with the temporal

additions of [Syv93a].

Finally, We have not looked at the still more ambitious

project of unifying the BAN family with other logics.

Nonetheless, we have produced a uni�ed BAN-like logic

that captures the features of four other logics. We have

approached this from the perspective of having an in-

tegrated model. Thus, unlike a Swiss Army knife, our

work is more than a collection of tools. Indeed, we be-

lieve it to be a better instance of all the tools it contains.
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A GNY Rules

We present these GNY rules without any explanation

of the rules or notation therein. Readers are referred to

[GNY90] for details.

A.1 Rationality Rule

If
C1

C2
is a rule, then for any principal P , so is

P j� C1

P j� C2
.

A.2 Being-Told Rules

T1
P / �X

P / X

T2
P / (X;Y )

P / X

T3
P / fXgK ; P 3 K

P / X

T4
P / fXg+K ; P 3 �K

P /X

T5
P / F (X;Y ); P 3 X

P / Y

T6
P / fXg�K ; P 3 +K

P /X

A.3 Possession Rules

P1
P / X

P 3 X

P2
P 3 X;P 3 Y

P 3 (X;Y ); P 3 F (X;Y )

P3
P 3 (X;Y )

P 3 X

P4
P 3 X

P 3 H(X)

P5
P 3 F (X;Y ); P 3 X

P 3 Y

P6
P 3 K; P 3 X

P 3 fXgK ; P 3 fXg
�1

K

P7
P 3 +K; P 3 X

P 3 fXg+K

P8
P 3 �K; P 3 X

P 3 fXg�K

A.4 Freshness Rules

F1
P j� #(X)

P j� #(X;Y ); P j� #F (X)

F2
P j� #(X); P 3 K

P j� #(fXgK); P j� #(fXg�1K )

F3
P j� #(X); P 3 +K

P j� #(fXg+K )

F4
P j� #(X); P 3 �K

P j� #(fXg�K)

F5
P j� #(+K)

P j� #(�K)

F6
P j� #(�K)

P j� #(+K)

F7
P j� �(X); P j� #(K); P 3 K

P j� #(fXgK); P j� #(fXg�1K )

F8
P j� �(X); P j� #(+K); P 3 +K

P j� #(fXg+K )

F9
P j� �(X); P j� #(�K); P 3 �K

P j� #(fXg�K)

F10
P j� #(X); P 3 X

P j� #(H(X))

F11
P j� #(H(X)); P 3 H(X)

P j� #(X)

A.5 Recognizability Rules

R1
P j� �(X)

P j� �(X;Y ); P j� �(F (X))

R2
P j� �(X); P 3 K

P j� �(fXgK); P j� �(fXg�1K )

R3
P j� �(X); P 3 +K

P j� �(fXg+K)

R4
P j� �(X); P 3 �K

P j� �(fXg�K)

R5
P j� �(X); P 3 X

P j� �(H(X))

R6
P 3 H(X)

P j� �(X)

A.6 Message Interpretation Rules

We present only I4, I6, and I7.

I4
P / fXg�K ; P 3 +K; P j�

+K
7! Q; P j� �(X)

P j� Q j� X; P j� Q j� fXg�K



I6
P j� Q j� X; P j� #(X)

P j� Q 3 X

I7
P j� Q j� (X;Y )

P j� Q j� X

A.7 Jurisdiction Rules

J1
P j� Q j) C; P j� Q j� C

P j� C

J2
P j� Q j) Q j� �; P j� Q j� (X ; C); P j� #(X)

P j� Q j� C

J3
P j� Q j) Q j� �; P j� Q j� Q j� C

P j� Q j� C

B AT Rules and Axioms

We present these AT rules and axioms without expla-

nation. Readers are referred to [AT91] for details.

There are two rules:

R1. Modus Ponens: From ` ' and ` ' �  infer `  .

R2. Necessitation: From ` ' infer ` P believes '.

Axioms are all instances of tautologies of classical

propositional calculus, and all instances of the follow-

ing axiom schemata:

Believing

For any principal P and formulae ' and  ,

A1. P believes ' ^ P believes (' �  ) � P believes  

A2. P believes ' � P believes (P believes ')

A3. :(P believes ') � P believes (:(P believes '))

Message Meaning

If P 6= S, then

A5. P
K
$ Q ^R sees fXSgK � Q said X

A6. P
Y
*)Q ^R sees hXS iY � Q said X

Seeing

A7. P sees (X1; : : : ; Xn) � P sees Xi

A8. P sees fXQgK ^ P has K � P sees X

A9. P sees hXQiS � P sees X

A10.P sees `X' � P sees X

A11.P sees fXQgK ^ P has K �
P believes (P sees fXQgK)

Saying

A12.P said (X1; : : : ; Xn) � P said Xi

A13.P said hXQiS � P said X

A14.P sees `X' ^ :P sees X � P said X

If ` says ' is substituted for ` said ' throughout in A12,

A13, or A14, the result is also an axiom.

Jurisdiction

A15.P controls ' ^ Psays' � '

Freshness

A16. fresh(Xi) � fresh(X1; : : : ; Xn)

A17. fresh(X) � fresh(fXgK)

A18. fresh(X) � fresh(hXiS )

A19. fresh(X) � fresh(`X0)

Nonce-Veri�cation

A20. fresh(X) ^ P said X � P says X

Shared Keys and Secrets

A21.R
K
$ R

0 � R
0 K$ R

A22.R
K
*)R

0 � R
0
K
*)R

C VO Rules

We present the three rules introduced in [vO93] (in the

original notation).

R30
A has PK�1

� (A); A has PK�(U )

A has K
where K = f(PK

�1

� (A);PK�(U )).

R31
A j� PK

�1

� (A); A j� PK�(B); A j� PK
�1

� (B)

A j� A
K�
 ! B

where K = f(PK
�1

� (A);PK�(B)).

R32
A j� A

K�
 ! B; A sees � con�rm(K)

A j� A
K+
 ! B


